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It will be shown that, in the convolution approximation, dynamic densities of molecules can be calculated 
directly from temperature factors and quantum-chemically calculated (static) densities, i.e. without 
recourse to numerical integration and without calculating Fourier coefficients and series. The applica- 
tion of the proposed method to the case of density units, derived from two-centre orbital products, is 
discussed in detail. 

In calculating dynamic densities one intends thermally 
to smear out static densities, which were calculated by 
quantum chemical methods, in order to compare static 
density distributions with those obtained by diffraction 
experiments on crystals. In quantum chemical calcula- 
tions of the density distribution of polyatomic mole- 
cules the atomic orbitals, and hence the density units, 
are in most cases represented by Gaussian functions 
and their derivatives (Boys, 1950; Stewart, 1969). 
Gaussian functions are used, e.g., in the programs 
IBMOL, POLYATOM, and GAUSSIAN 70 (QCPE, 
1974). Let the static density in the position x of the 
molecule be represented by 

O(X)sta ,  = 

= ~ Puv ~ du,d~jqu,(x)q~(x), (1) 
it,V= l l,j----1 

where the P~v are the population parameters, the d~, 
i = 1 . . . n ,  expansion coefficients for the orbital rp~,, 
and q, Kx) the respective Gaussian functions or their 
partial derivatives. The basic density unit in (1) is a 
product P,~vd, j~jq~,(x)q~j(x). Let both the orbitals /z 
and v be of s type and both qut and qv~ be Gaussian, 
then the product q,~q~j is also Gaussian and may be 

written in a general and normalized form as 

g(x).~ta,=(2n)-a/2(det G)l/2exp [ -- ½(x -- c)TG(x -- c)] . 
(2) 

G is a 3 x 3 symmetric, positive definite matrix, c is a 
3 × 1 column matrix representing the point in the 
molecule where the Gaussian is centred; and the super- 
script T indicates the transpose matrix. Products 
quiqvj containing higher orbitals (p, d, or f )  will be 
considered below. The average thermal motion of a 
density unit, in the harmonic approximation, is de- 
scribed by a smearing function of the form 

f(u)=(2n)-a/2(det U-1)l/Zexp (--½uTU-lu). (3) 

U is the anisotropic vibration tensor of the density 
unit, f(u) is known to be the Fourier transform of the 
temperature factor, and the displacement vector u is 
measured from the equilibrium position c of the den- 
sity unit. The dynamic density, generated by thermal 
displacement of the static (rigid) unit (convolution 
approximation of Coulson & Thomas, 1971), is then 
given by the convolution integral 

g(X)dyn = _ : ( X - -  C-- U)statf(u)du. (4) 
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So far, only special solutions of (4) are known. 
Hosemann & Bagchi (1962) give the solution for the 
case G=ctE, U - t = ? E ,  where E is the unit matrix. 
Stewart (1968) gives the solution for G=~tE, U being 
diagonal, applied to the case of one-centre orbital 
products. In favourable situations, the problem can be 
adapted to these solutions and (4) can be worked out 
analytically, as was done by Ruysink & Vos (1974) in 
calculating the dynamic density of the C2H 2 molecule. 
In all other cases one is forced either to integrate (4) 
numerically or to calculate the Fourier transform of the 
static density, introduce temperature factors, and cal- 
culate the Fourier series with the (dynamic) structure 
factors so obtained. Both procedures are usually 
time-consuming. The more so in the first case, the more 
points of the dynamic density that are calculated. In 
the second case the procedure becomes less economic, 
the fewer the points that are desired, since all Fourier 
coefficients are needed. In this paper we shall give the 
general solution for (4), and shall discuss the case where 
the two orbitals of a given product are centred at two 
different nuclei. 

The convolution product of two functions in direct 
space is known to correspond to the product of the 
Fourier transforms in reciprocal space. We will find 
the analytical solution of (4) by transforming the 
product of the transforms back to direct space. The 
transform of (2) is 

F(h)sta t = exp ( -  2zcZhrG- ~h) exp (2rcihrc), (5) 

and the transform of (3) is the temperature factor 

T(h) =exp ( -  2zc2hrUh). (6) 

In the product of (5) and (6), we have the quadratic 
form h r ( G - l + U )  h in the exponent. Apart from this, 
the product has the form (5) and now, with the vibra- 
tion tensor U being incorporated, represents the 
Fourier transform of the dynamic density. Hence, 
transformation to direct space yields 

g(X)0y, = (21r)-a/2[det (G -1 + U)-I] I/2 
x exp [ - ½ ( x - c ) r ( G  - l + U ) - l ( x - c ) ] .  (7) 

If we define the displacement vector u also with 
respect to the origin of x (and not w.r.t, c), then the 
temperature factor (6) would also have a phase factor; 
and in our result (7) we would obtain x - 2 c  (instead 
of x - c ) ,  in full agreement with Hosemann & Bagchi's 
(1962) result. In our case however, it is necessary, as 
is customary in the crystallographic literature, to refer 
u to the equilibrium position c, because only in this 
case the Gaussian distribution of the dynamic density 
remains centred at the point c. 

Now we shall apply (7) to the products q~,qvj of (1). 
The higher orbitals (p, d, or f )  can be obtained by 
partial differentiation of the s orbitals with respect to 
the nuclear coordinates (Boys, 1950). This differentia- 
tion can be carried out after the integration (4) has 
been performed, but then the nuclear coordinates must 
be accessible in the expression for the dynamic density 

of the s, s orbital products. Let us write representatively 
for the product q,~q,,.i which belongs to two s orbitals, 
which are centred at the nuclei a and b respectively, 

g(x, SS)stat=exp [ -  ½(x-  a ) r A ( x -  a)] 
x exp [ - ½ ( x - b ) r B ( x - b ) ] .  (8) 

In order to be able to apply our solution (7) we have 
to express a and b in (8) in terms of the centre c of that 
Gaussian which is the product of the two factors in 
(8). Re-ordering of terms in (8) yields 

g(x, SS)stat=exp [-- ½(X-- e)TG(x-- C)] 

x exp [ - ½ ( a r A a + b r B b - c r G c ) ] ,  (9a) 
where 

G = A + B ,  c = G - I ( A a + B b ) .  (gb) 

In general, the density unit under consideration will 
be placed somewhere between the positions a and b of 
the nuclei. Vibration tensors for such internuclear 
density units are derived by Scheringer (1976). The 
question of what tensor should be applied to a given 
density unit is discussed below. We introduce the vibra- 
tion tensor U and, by properly taking into account the 
normalization factors, we obtain from (7) and (9): 

g(x, ss)dy.=[det G -~ det (G -1 + U)-~] ~/2 
x exp [ - ½ ( x - c ) r ( G  -1 + U ) - l ( x - c ) ]  
x exp [ - ½ ( a r A a + b r B b - c r G c ) ] .  (10) 

The dynamic densities of the orbital products p,s and 
PiPs (i,j= 1,2, 3 for the three directions of space) will 
only be given for the special cases 

~ x a + f l b  A=~xE, B=flE G=(~x+fl)E c . . . . . .  (11) 
, , ~+fl  

which are predominantly used in quantum chemical 
calculations. Let the pi orbital be centred at the nucleus 
a and the s orbital at the nucleus b, and we obtain 
from (10) and (11) 

where 

g(x,piS)dr. -- 
1 tgg(x, sS)dyn 

6~a~ 

=P,(o~ + fl)--ig(x, SS)dy., (12a) 

e ,  = [ ( x -  c)TF], + ~(b,  - a,) ,  

F = [ ( ~ + / O - l v , + U ]  -1 (12b) 

If the orbital Pi is centred at the nucleus a and the 
orbital pj is centred at the nucleus b, then we obtain 

1 82g(x, SS)dyn 
g(x'ptPJ)dyn-- ~fl 8a~Obj 

=(~+fl ) -2[PiPj+(~+fl)~, j - -Fjg(x ,  sS)dy., (13) 

where 6~j= 1 for i=j, and 6 i j=0  for i+j .  In order to 
obtain the dynamic densities of the d and f orbital 
products, the respective higher derivatives have to be 
formed. 
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Ruysink & Vos (1974) have treated the two-centre 
case (a:t: b) in a different manner. They displace the 
orbitals and their respective nuclei and, from the 
displaced orbitals, they calculate the density. Such an 
approach is inconsistent with the Born-Oppenheimer 
approximation: for a given thermal configuration a,b 
of the nuclei, the density, i.e. the orbital product 
~0,~%, is formed immediately and then - if at all - the 
density unit is thermally, i.e. relatively slowly, dis- 
placed, but not the single orbitals. The effect of such an 
approach is dependent on the degree of correlation 
between the vibrations of the two nuclei a and b. For 
rigid-body translation the displacement of the orbitals 
is obviously equal to the displacement of the density. 
For the case of independent vibrations, Ruysink & 
Vos's (1974) integral (10) can be shown to break down 
into two convolution integrals over the single orbitals 
~0, and (Pb respectively. Hence, in this case two thermally 
averaged orbitals are calculated in the first place and 
are then multiplied to form the density. For other 
cases of correlation Ruysink & Vos's integral (10) 
cannot easily be analysed. We are not able to judge to 
what extent the inconsistency of Ruysink & Vos's 
(1974) approach with the Born-Oppenheimer approx- 
imation will be numerically relevant. 

The question remaining to be discussed is what 
vibration tensors U have to be used in (10) for the 
dynamic density. In this context we point out that, in 
the convolution approximation used here, the dynamic 
density is not uniquely defined because the bond 
densities do not behave physically according to the 
pattern of the convolution approximation. Only in the 
'exact description' of a vibrating molecule is the 
dynamic density uniquely defined (within the frame- 
work of the Born-Oppenheimer approximation), cf. 
Scheringer (1976); but this description does not yield 
precepts of how the density distribution is to be 
divided into vibrating rigid units since, in principle, 
there are no such units in this description. Since the 
dynamic density is generally not calculated for its own 
sake, but rather for comparison with experimental 
results, these being also described in the convolution 
approximation, we obtain a clear-cut precept con- 
cerning the vibration tensors: These tensors must be 
taken from the dynamic model used in the refinement 
of the electron density, even if the tensors of this model 
are not correct. This precept can easily be satisfied 
when the experimental model of the density distribu- 
tion is also formulated by means of orbital products, 
such as that of Coppens, Willoughby & Csonka (1971). 
For the two-centre orbital products, these authors used 
temperature factors which refer to the midpoint 
(a + b)/2 between the nuclei. However there are several 
other experimental models which are not formulated 
in terms of orbital products but are rather constructed 
from points of view relevant to structure analysis, cf. 
e.g. Hirshfeld & Rabinovich (1967); Hirshfeld (1971); 
Brill, Dietrich & Dierks (1971). In such cases, the 
dynamic density can only approximately be calculated 

from an LCAO approach by trying to simulate the 
experimental model as much as possible. 

How much gain in computing time is obtained with 
the analytical formulae presented here? We first 
compare the calculation of the dynamic density with 
the calculation of the static density. Our equations 
(10), (12), and (13) contain the matrices F =  
(G-~+U) -1 in places where the corresponding 
formulae for the static density would have G. Having 
introduced the vibration tensor U, it is no longer 
possible to break down the dynamic density units into 
a product of two dynamic orbitals. Consequently, an 
advantage which is used in the calculation of the static 
density can no longer be exploited, for N orbitals need 
only N elements ~0,(x) and a (very fast) matrix multi- 
plication ~rp~ can be calculated. For the dynamic 
density, however, N(N+ 1)/2 products P~¢p,(x)~0v(x) 
must be calculated, since in (1), the products q, tqvj 
first arise. This mode of calculation corresponds fully 
to the calculation of structure factors for the dynamic 
density; but in place of q~aq~j we then have the trans- 
forms of these products. Since the transforms of or- 
bital products lacking a centre of symmetry are com- 
plex, and the density units are always real, the com- 
puting time for one density point 0(x)ayn is about half 
the time needed for one structure factor. 

Compared to the calculation of the dynamic density 
via structure factors, the analytical method discussed 
in this paper is generally much_ faster. If, for example, 
300 density points are desired and 1500 structure fac- 
tors are needed, the direct calculation is about ten 
times faster. Obviously the direct calculation is partic- 
ularly favourable when only a few density points are 
desired. A further advantage of the analytical solution 
consists in obtaining the dynamic density without 
series termination errors which could otherwise only 
be eliminated by calculating a large number of struc- 
ture factors. 
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